Strain improvement of Trichoderma afroharzianum through induced gamma radiation mutation for cellulase and xylanase production enhancement

Document Type : Original Article

Authors

1 Nuclear Agriculture School, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), Karaj, Iran

2 Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran ; Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran

3 Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran

10.22043/mi.2024.365994.1283

Abstract

Cellulases and xylanases are hydrolytic enzymes that randomly cleave the β-1, 4 backbones of the cellulose and arabinoxylans of wheat flour and are widely used in the bakery industry as a dough texture improver in the formulations of flour products. Creating novel sources of a microbial strain using induced gamma irradiation can increase enzyme production for bakery industrial usage. According to this, Co60 gamma irradiation has been used to develop a mutant strain of Trichoderma afroharzianum. Trichoderma mutants were isolated, and the qualitative and quantitative screening were used to evaluate the extracellular enzyme production with the wheat bran waste as a substrate. The best Trichoderma mutant isolate was identified using the DNA barcoding method. The highest xylanase activities were observed in the superior mutant isolate of Trichoderma afroharzianum NAS107-M82, which is approximately 3.3 times higher than its parent strain. The electrophoretic pattern of proteins showed that the exo-glucanase I, endo-glucanase III, and the xylanase I enzymes hydrolyzed the wheat bran, synergistically. Overall, gamma irradiation-induced mutation could be an expedient technique to access such superior mutants for the bioconversion of wheat bran wastes to xylanase enzyme.

Keywords


Abbasi, S., Safaie, N., Shams-Bakhsh, M., Shahbazi, S., 2016. Biocontrol activities of gamma induced mutants of Trichoderma harzianum against some soilborne fungal pathogens and their DNA fingerprinting. Iran. J. Biotechnol. 14, 260–269. https://doi.org/10.15171/ijb.1224
Barreiro, C., Martín, J.F., García-Estrada, C., 2012. Proteomics shows new faces for the old penicillin producer Penicillium chrysogenum. J. Biomed. Biotechnol. 2012, 105–109. https://doi.org/10.1155/2012/105109
Bischof, R.H., Ramoni, J., Seiboth, B., 2016. Cellulases and beyond: The first 70 years of the enzyme producer Trichoderma reesei. Microb. Cell Fact. 15, 1–13.
Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.
Catlett, N.L., Lee, B.-N., Yoder, O.C., Turgeon, B.G., 2003. Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genet. Rep. 50, 9–11.
Diep, T.B., Thi Thom, N., Dang Sang, H., Xuan An, T., Van Binh, N., Minh Quynh, T., 2020. Effect of gamma irradiation on the viability and cellulase production of some filamentous fungi. Vietnam J. Biotechnol. 18, 341–348.
Dillon, A.J.P., Zorgi, C., Camassola, M., Henriques, J.A.P., 2006. Use of 2-deoxyglucose in liquid media for the selection of mutant strains of Penicillium echinulatum producing increased cellulase and β-glucosidase activities. Appl. Microbiol. Biotechnol. 70, 740–746.
Doner, L.W., Hicks, K.B., 1997. Isolation of hemicellulose from corn fiber by alkaline hydrogen peroxide extraction. Cereal Chem. 74, 176–181.
Druzhinina, I.S., Kopchinskiy, A.G., Komoń, M., Bissett, J., Szakacs, G., Kubicek, C.P., 2005. An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet. Biol. 42, 813–828.
FAOSTAT, F.A.O., 2023. Food and Agriculture Organization of the United Nations-Statistic Division https://www. fao. org/faost at/en/# data.
Fernandes, C.G., Sawant, S.C., Mule, T.A., Khadye, V.S., Lali, A.M., Odaneth, A.A., 2022. Enhancing cellulases through synergistic β-glucosidases for intensifying cellulose hydrolysis. Process Biochem. 120, 202–212.
Fernandes, C.G., Sawant, S.C., Mule, T.A., Khadye, V.S., Odaneth, A.A., 2023. Synergistic β-glucosidases for improving cellulases recyclability and biomass enzymatic saccharification in wheat straw. Biomass and Bioenergy 175, 106881.
Ghasemi, S., Safaie, N., Shahbazi, S., 2019. Enhancement of lytic enzymes activity and antagonistic traits of Trichoderma harzianum using γ-radiation induced mutation edible and medicinal mushrooms: genetic diversity and molecular systematics View project Manipulating the plant microbiome to disease. J. Agric. Sci. Technol. 21, 1035–1048.
Gherbawy, Y.A.M.H., 1998. Effect of gamma irradiation on the production of cell wall degrading enzymes by Aspergillus niger. Int. J. Food Microbiol. 40, 127–131.
Gohel, V., Megha, C., Vyas, P., Chhatpar, H.S., 2004. Strain improvement of chitinolytic enzyme producing isolate Pantoea dispersa for enhancing its biocontrol potential against fungal plant pathogens. Ann. Microbiol. 54, 503–515.
Gooruee, R., Hojjati, M., Behbahani, B.A., Shahbazi, S., Askari, H., 2024. Extracellular enzyme production by different species of Trichoderma fungus for lemon peel waste bioconversion. Biomass Convers. Biorefinery 14, 2777–2786.
Hayn, M., Steiner, W., Klinger, R., Steinmüller, H., Simer, M., Esterbauer, H., 1993. Basic research and pilot studies on the enzymatic conversion of lignocellulosics. Bioconversion For. Agric. Plant Residues 33–72.
Hidayati, F.L.N., Sardjono, Giyatmi, Cahyanto, M.N., 2021. Enhancement of Indigenous Fungal Cellulase Production by Gamma Rays, in: IOP Conference Series: Materials Science and Engineering. IOP Publishing, p. 012004. https://doi.org/10.1088/1757-899x/1192/1/012004
Hussein, L.F., Saadullah, A.A.M., 2023. DNA Marker Identification of Trichoderma and Fusarium Level Species, in: IOP Conference Series: Earth and Environmental Science. IOP Publishing, p. 12175.
Javed, S., Asgher, M., Sheikh, M.A., Nawaz, H., 2010. Strain improvement through UV and chemical mutagenesis for enhanced citric acid production in molasses-based solid state fermentation. Food Biotechnol. 24, 165–179.
Karanam, S.K., Medicherla, N.R., 2008. Enhanced lipase production by mutation induced Aspergillus japonicus. African J. Biotechnol. 7, 2064–2067.
Kardos, N., Demain, A.L., 2011. Penicillin: The medicine with the greatest impact on therapeutic outcomes. Appl. Microbiol. Biotechnol. 92, 677–687. https://doi.org/10.1007/s00253-011-3587-6
Karlsson, J., Siika-Aho, M., Tenkanen, M., Tjerneld, F., 2002. Enzymatic properties of the low molecular mass endoglucanases Cel12A (EG III) and Cel45A (EG V) of Trichoderma reesei. J. Biotechnol. 99, 63–78.
Köhnke, T., Lund, K., Brelid, H., Westman, G., 2010. Kraft pulp hornification: A closer look at the preventive effect gained by glucuronoxylan adsorption. Carbohydr. Polym. 81, 226–233.
Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549.
Kunamneni, A., Plou, F.J., Alcalde, M., Ballesteros, A., 2014. Trichoderma Enzymes for Food Industries, in: Biotechnology and Biology of Trichoderma. Elsevier, pp. 339–344.
Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.
Lappalainen, A., Siika‐Aho, M., Kalkkinen, N., Fagerström, R., Tenkanen, M., 2000.  Endoxylanase II from Trichoderma reesei has several isoforms with different isoelectric points . Biotechnol. Appl. Biochem. 31, 61–68.
Lee, Y.K., Chang, H.H., Kim, J.S., Kim, J.K., Lee, K.S., 2000. Lignocellulolytic mutants of Pleurotus ostreatus induced by gamma-ray radiation and their genetic similarities. Radiat. Phys. Chem. 57, 145–150.
Mach, R.L., Zeilinger, S., 2003. Regulation of gene expression in industrial fungi: Trichoderma. Appl. Microbiol. Biotechnol. 60, 515–522.
Mafa, M.S., Pletschke, B.I., Malgas, S., 2021. Defining the frontiers of synergism between cellulolytic enzymes for improved hydrolysis of lignocellulosic feedstocks. Catalysts 11, 1343.
Marques, E., DE OLIVEIRA, D.R., Santos, F.H.C., DE CASTRO, K.H.M., Silva, M.R., Abreu, V.P., DA CUNHA, M.G., 2022. Antagonism and molecular identification of Trichoderma isolated from rhizosphere of medicinal plants. J. Biol. Control 36, 7–16.
 Mirkhani, F., Alaei, H., 2015. Species diversity of indigenous Trichoderma from alkaline pistachio soils in Iran. Mycol. Iran. 2, 22–37.
Mobini-Dehkordi, M., Nahvi, I., Zarkesh-Esfahani, H., Ghaedi, K., Tavassoli, M., Akada, R., 2008. Isolation of a novel mutant strain of Saccharomyces cerevisiae by an ethyl methane sulfonate-induced mutagenesis approach as a high producer of bioethanol. J. Biosci. Bioeng. 105, 403–408.
Naeimi, S., Khodaparast, S., Javan-Nikkhah, M., Vágvölgyi, C., Kredics, L., 2011. Species pattern and phylogenetic relationships of Trichoderma strains in rice fields of Southern Caspian Sea, Iran. Cereal Res. Commun. 39, 560–568. https://doi.org/10.1556/CRC.39.2011.4.11
Okada, H., Tada, K., Sekiya, T., Yokoyama, K., Takahashi, A., Tohda, H., Kumagai, H., Morikawa, Y., 1998. Molecular characterization and heterologous expression of the gene encoding a low-molecular-mass endoglucanase from Trichoderma reesei QM9414. Appl. Environ. Microbiol. 64, 555–563.
Onipe, O.O., Jideani, A.I.O., Beswa, D., 2015. Composition and functionality of wheat bran and its application in some cereal food products. Int. J. Food Sci. Technol. 50, 2509–2518.
Ottenheim, C., Werner, K.A., Zimmermann, W., Wu, J.C., 2015. Improved endoxylanase production and colony morphology of Aspergillus niger DSM 26641 by γ-ray induced mutagenesis. Biochem. Eng. J. 94, 9–14.
Özkale, E., Doğan, Ö., Budak, M., Korkmaz, E.M., 2024. Mitogenome evolution in Trichoderma afroharzianum strains: for a better understanding of distinguishing genus. Genome 67, 139–150.
Özkale kaya, E., Dogan, Ö., Budak, M., Korkmaz, E.M. 2022. An Insight into Mitochondrial Genomes of Trichoderma afroharzianum Strains: A Comparative and Evolutionary Analysis. SSRN Electron. J. https://doi.org/10.2139/ssrn.4139369
Parkkinen, T., Hakulinen, N., Tenkanen, M., Siika-aho, M., Rouvinen, J., 2004. Crystallization and preliminary X-ray analysis of a novel Trichoderma reesei xylanase IV belonging to glycoside hydrolase family 5. Acta Crystallogr. Sect. D Biol. Crystallogr. 60, 542–544.
Pauly, M., Albersheim, P., Darvill, A., York, W.S., 1999. Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J. 20, 629–639. https://doi.org/10.1046/j.1365-313X.1999.00630.x
Penttilä, M., Lehtovaara, P., Nevalainen, H., Bhikhabhai, R., Knowles, J., 1986. Homology between cellulase genes of Trichoderma reesei: complete nucleotide sequence of the endoglucanase I gene. Gene 45, 253–263.
Ribeiro, O., Magalhães, F., Aguiar, T.Q., Wiebe, M.G., Penttilä, M., Domingues, L., 2013. Random and direct mutagenesis to enhance protein secretion in Ashbya gossypii. Bioengineered 4, 322–331. https://doi.org/10.4161/bioe.24653
Ross, A.I.V., Griffiths, M.W., Mittal, G.S., Deeth, H.C., 2003. Combining nonthermal technologies to control foodborne microorganisms. Int. J. Food Microbiol. 89, 125–138.
Sahu, S., Mahilang, A., Agrawal, T., IRRI, U.S.S., Kotasthane, A.S., Zaidi, N.W., 2023. Gamma-ray Induced Putative Mutants derived from Trichoderma atroviride (T-14) Stimulating Plant Growth through Enhanced Siderophore production, Phosphate solubilisation, ACCd activity and IAA production.
Saloheimo, A., Henrissat, B., Hoffrén, A. ‐M, Teleman, O., Penttilä, M., 1994. A novel, small endoglucanase gene, egl5, from Trichoderma reesei isolated by expression in yeast. Mol. Microbiol. 13, 219–228.
Saloheimo, M., Lehtovaara, P., Penttilä, M., Teeri, T.T., Ståhlberg, J., Johansson, G., Pettersson, G., Claeyssens, M., Tomme, P., Knowles, J.K.C., 1988. EGIII, a new endoglucanase from Trichoderma reesei: the characterization of both gene and enzyme. Gene 63, 11–21.
Saloheimo, M., Nakari-SETÄLÄ, T., Tenkanen, M., Penttilä, M., 1997. cDNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in yeast. Eur. J. Biochem. 249, 584–591.
Samuels, G.J., Dodd, S.L., Gams, W., Castlebury, L.A., Petrini, O., 2002. Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia 94, 146–170.
Shafei, M.S., Mohamed, T.A., Elsalam, I.S.A., 2011. Optimization of extracellular lipase production by Penicillium chrysogenum using factorial design. Malays. J. Microbiol. 7, 71–77.
Shahbazi, S., Askari, H., Mojerlou, S., 2016. The impact of different physicochemical parameters of fermentation on extracellular cellulolytic enzyme production by Trichoderma harzianum. J. Crop Prot. 5, 397–412.
Shahbazi, S., Ispareh, K., Karimi, M., Askari, H., 2014. Gamma and UV radiation induced mutagenesis in Trichoderma reesei to enhance cellulases enzyme activity. Int. J. Farming Allied Sci. 3, 543–554.
Smith, J.S., Pillai, S., 2004. Irradiation and food safety. Food Technol. 58, 48–55.
Steensels, J., Snoek, T., Meersman, E., Nicolino, M.P., Voordeckers, K., Verstrepen, K.J., 2014. Improving industrial yeast strains: Exploiting natural and artificial diversity. FEMS Microbiol. Rev. 38, 947–995.
Tamura, K., Nei, M., Kumar, S., 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. U. S. A. 101, 11030–11035.
Tauxe, R. V., 2001. Food safety and irradiation: Protecting the public from foodborne infections. Emerg. Infect. Dis. 7, 516–521.
Teeri, T., Salovuori, I., Knowles, J., 1983. The molecular cloning of the major ceuulase gene from Trichoderma reesei. Bio/Technology 1, 696–699.
Teeri, T.T., Lehtovaara, P., Kauppinen, S., Salovuori, I., Knowles, J., 1987. Homologous domains in Trichoderma reesei cellulolytic enzymes: Gene sequence and expression of cellobiohydrolase II. Gene 51, 43–52.
Tenkanen, M., Puls, J., Poutanen, K., 1992. Two major xylanases of Trichoderma reesei. Enzyme Microb. Technol. 14, 566–574.
Torronen, A.K., 1997. The two major endo-1, 4-beta-xylanases from Trichoderma reesei: Characterization of both enzymes and genes.
Ward, M., Wu, S., Dauberman, J., Weiss, G., Larenas, E., 1993. Cloning, sequence and prelimary analysis of  small, high pI endoglucanase (EGIII) from Trichoderma reesei, in: Trichoderma Reesei Cellulases and Other Hydrolases. Foundation of Biotechnical and Industrial Fermentation Research, pp. 153–158.
Xu, J., Takakuwa, N., Nogawa, M., Okada, H., Morikawa, Y., 1998. A third xylanase from Trichoderma reesei PC-3-7. Appl. Microbiol. Biotechnol. 49, 718–724.
Yopi, Tasia, W., Melliawati, R., 2017. Cellulase and xylanase production from three isolates of indigenous endophytic fungi, in: IOP Conference Series: Earth and Environmental Science. IOP Publishing, p. 12035.
Zajki-Zechmeister, K., Eibinger, M., Nidetzky, B., 2022. Enzyme synergy in transient clusters of endo- and exocellulase enables a multilayer mode of processive depolymerization of cellulose. ACS Catal. 12, 10984–10994.
Zhang, Y.H.P., Lynd, L.R., 2006. A functionally based model for hydrolysis of cellulose by fungal cellulase. Biotechnol. Bioeng. 94, 888–898.
Zhang, Y.H.P., Lynd, L.R., 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnol. Bioeng. 88, 797–824.
Zhao, S., Tan, M.Z., Wang, R.X., Ye, F.T., Chen, Y.P., Luo, X.M., Feng, J.X., 2022. Combination of genetic engineering and random mutagenesis for improving production of raw-starch-degrading enzymes in Penicillium oxalicum. Microb. Cell Fact. 21, 272.
Zhi, C.W., Clarkson, K.A., Morgan, A.J., 1999. Xylanase From Acidothermus Cellulolyticus. U.S. Patent 5,902,581.
Zolan, M.E., Tremel, C.J., Pukkila, P.J., 1988. Production and characterization of radiation-sensitive meiotic mutants of Coprinus cinereus. Genetics 120, 379–387.