Heterothallism and sexual reproduction in the Iranian isolates of Aspergillus flavus

Document Type : Original Article


1 Plant Pathology Section, Plant Protection Department, Bu-Ali Sina University, Hamedan, Iran

2 Plant Pathology Section, Plant Protection Department, Bu Ali-Sina University, Hamedan, Iran



Ascomycota includes a large number of species that lack a known sexual stage but have a hidden potential for sexual reproduction, among which is Aspergillus flavus, an opportunistic aflatoxin-producing pathogen. The sexual stage of this heterothallic fungus results from crossing between strains with opposite mating types that belong to different vegetative compatibility groups. Here, twenty A. flavus Iranian isolates were investigated for heterothallism and sexual reproduction. The mating type genes MAT1-1 and MAT1-2 were explored using specific primers and multiplex PCR. The results indicated an equal frequency of mating types (1:1) in the investigated A. flavus isolates, indicating heterothallism, and possible sexual reproduction. The cross-cultures on Mixed Cereal Agar (MCA) and Aspergillus Complete Medium (ACM) induced the sexual phase. After 6 to 11 months, 33.16% of the crosses led to sexual reproduction and the sexual reproductive organ of the fungus appeared at the contact lines of the crosses. Scanning Electron Microscopy (SEM) analyses revealed multiple asci and ascospores, which were produced in the pseudoparenchymatous stromata. Ascospore production was more efficient in ACM than in the MCA. Our findings place the Iranian A. flavus in the genus Petromyces, as Petromyces flavus


Agrios, G.N. 2005. Plant Pathology: Fifth Edition. Elsevier Academic Press. p. 922.
Amaike, S., Keller, and N.P. 2009. Distinct roles for VeA and LaeA in development and pathogenesis of Aspergillus flavus. Eukaryotic Cell 8: 1051–1060.
Amaike, S., and Keller, N.P. 2011. Aspergillus flavus. Annual Review of Phytopathology 49:107–133.
Anderson, J.B., Kohn, L.M., and Leslie, J.F. 1992. Genetic mechanisms in fungal adaptation. In The fungal community: its organization and role in the ecosystem. Marcel Dekker, New York, pp. 73–98.
Bennett, N.Y.  2010. An overview of the genus Aspergillus. In:  Aspergillus:  Molecular Biology and Genomics. Machida and Gomi (eds).  Caister Academic Press.
Burgess, T., Bihon, W., Wingfield, M.J., and Wingfield, B.D. 2009. A simple and rapid method to determine vegetative compatibility groups in fungi. Inoculum: Newsletter of the Mycological Society of America 60: 1-2.
Campbell, C.K. 1994. Forms of aspergillosis. In The Genus Aspergillus. Edited by K. A. Powell, A. Renwick & J. F. Peberdy. New York: Plenum pp. 313–320.
Chang, P.K., Ehrlich, K.C., and Fujii, I. 2009. Cyclopiazonic acid biosynthesis of Aspergillus flavus and Aspergillus oryzae. Toxins 1:74-99.
Cheraghali, AM, Yazdanpanah, H, Doraki, N, Abouhossain, G, et al. 2007. Incidence of aflatoxins in Iran pistachio nuts. Food and Chemical Toxicology 45:812-816.
Coppin, E.,  Debuchy, R.,  Arnaise, S.  and Picard, M. 1997. Mating types and sexual development in filamentous ascomycetes. Microbiology and Molecular Biology Reviews 61: 411_428.
Debuchy, R. and Turgeon, B. 2006. Mating type structure, evolution, and function in euascomycetes. In The Mycota I: Growth, Differentiation and Sexuality (Ed. U. Kües and R. Fischer), Springer Verlag, Berlin. pp. 293-323.
Dyer, P.S. and O’Gorman, C.M. 2011. A fungal sexual revolution: Aspergillus and Penicillium show the way.Current Opinion in Microbiology 14:649–654.
Dyer, P.S., Ingram, D.S., Johnstone, K. 1992. The control of sexual morphogenesis in the Ascomycotina. Biological Reviews 67: 421–458.
Eagle, C.E. 2009. Mating type genes and sexual potential in the Ascomycete genera Aspergillus and Penicillium. PhD Dissertation, University of Nottingham.
Erfandoust, R., Habibi, R., and Soltani, J. 2020. Antifungal activity of endophytic fungi from Cupressaceae against human pathogenic Aspergillus fumigatus and Aspergillus niger. Journal de Mycologie Medicale 30: 100987.
Geiser, DM. 2009. Sexual structures in Aspergillus: morphology, importance and genomics. Medical Mycology 47 Suppl 1:S21-6.
 Geiser, D., Frisvad, J., and Taylor, J.  1998. Evolutionary relationships in Aspergillus section Fumigati inferred from partial β−tubulin and hydrophobin DNA sequences. Mycologia 90: 831-845.
 Geiser, D., Klich, M., Frisvad, J., Peterson, S., Varga, J., and Samson, R. 2007. The current status of species recognition and identification in Aspergillus.  Studies in Mycology 59: 1‐10.
Ghiasian, SA, Shephard, GS, and Yazdanpanah, H. 2011. Natural occurrence of aflatoxins from maize in Iran. Mycopathologia 172: 153-160.
Golparyan, F., Azizi, A. and Soltani, J. 2018. Endophytes of Lippia citriodora (Syn. Aloysia triphylla) enhance its growth and antioxidant activity. European Journal of Plant Pathology 152: 759–768.
Hedayati, M., Pasqualotto, A., Warn, P., Bowyer, P., and Denning, D. (2007) Aspergillus flavus: human pathogen, allergen and mycotoxin producer.  Microbiology 153: 1677-1692.
Hedayati, MT, Kaboli, S, and Mayahi, S. 2010. Mycoflora of pistachio and peanut kernels from Sari, Iran. Jundishapur Journal of Microbiology 3: 114-20
Horn, B.W., and Dorner, J.W. 1999. Regional differences in production of aflatoxin B1and cyclopiazonic acid by soil isolates of Aspergillus flavus along a transect within the United States. Applied and Environmental Microbiology l 65: 1444–1449.
Horn, B., Moore, G., and Carbone, I. 2009. Sexual reproduction in Aspergillus flavus. Mycologia 101: 423-429.
Houshyarfard, M., Rouhani, H., Falahati-Rastegar, M., Malekzadeh-Shafaroudi, S., Mehdikhani-Moghaddam, E., and Chang P.K. 2014b. Gene deletion patterns in non-aflatoxigenic isolates of Aspergillus flavus. Mycologia Iranica 1: 87-97.
Houshyarfard, M., Rouhani, H., Falahati-Rastegar, M., Malekzadeh-Shafaroudi, S., Mehdikhani-Moghaddam, E., and Probst C. 2014a. Characterization of Aspergillus section Flavi from pistachio soils in Iran. Journal of Plant Protection Research 54(4).
Houshyarfard, M, Rouhani, H, Falahati-Rastegar, M, Malekzadeh-Shafaroudi, S, and Mahdikhani-Moghaddam, E. 2015. Characterization of Iranian nonaflatoxigenic strains of Aspergillus flavus based on microsatellite-primed PCR. Molecular Biology Research Communications 4:43-55.
Leslie, J. 1993. Fungal vegetative compatibility. Annual Review of Phytopathology 31:127-150.
Leslie, C. E., Flannigan, B., and Milne, L.J.R. 1988. Morphological studies on clinical isolates of Aspergillus fumigatus. Journal of Medical Veterinary Mycology 26: 335-34
Li, C, Liu, X, Wu, J, Ji, X, and Xu, Q. 2022. Research progress in toxicological effects and mechanism of aflatoxin B1 toxin. PeerJ 10:e13850
Lucas, J.A., Dyer, P.S., and Murray, T. 2000. Pathogenicity, host specificity, and population biology of Tapesia spp. causal agents of eyespot disease of cereals. Advances in Botanical Research 33:225–258.
Magee, P.T., and Magee, B.B. 2004. Through a glassopaquely: The biological significance of mating in Candida albicans. Current Opinion in Microbiology 7: 661–665.
Murray, M.G., and Thompson, W.F. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8:4321-5.
Peterson, S. 2008. Phylogenetic analysis of Aspergillus species using DNA sequences from four loci. Mycologia 100: 205-226.
Ramirez-Prado, J., Moore, G., Horn, B., and Carbone, I. 2008. Characterization and population   analysis   of   the   mating type   genes   in   Aspergillus   flavus and Aspergillus parasiticus. Fungal Genetics and Biology 45: 1292-1299.
Soltani J. 2016. Secondary metabolite diversity of the genus Aspergillus:  recent advances.  In:  New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier, pp.  275–292.
Soltani, J. 2017. Endophytism in Cupressoideae (Coniferae): A model in endophyte biology and biotechnology. In: Endophytes: Biology and Biotechnology. Pp. 127-143. (Ed. D. Maheshwari)
Soltani, J., and Hosseyni Moghaddam, M.S. 2014. Diverse and bioactive endophytic Aspergilli inhabit Cupressaceae plant family. Archives of Microbiology 196: 635-644.
Soltani, J., Samavati, R., Jalili, B. et al. 2023. Halotolerant endophytic bacteria from desert-adapted halophyte plants alleviate salinity stress in germinating seeds of the common wheat Triticum aestivum L. Cereal Reseach Communications. https://doi.org/10.1007/s42976-023-00377-3
Taylor, J.W., Jacobson, D.J., and Fisher, M.C. 1999a. The evolution of asexual fungi: Reproduction, speciation and classification. Annual Review of Phytopathology 37: 197–246.
Taylor, J.W., Geiser, D.M., Burt, A., and Koufopanou, V. 1999b. The evolutionary biology and population genetics underlying fungal strain typing. Clinical Microbiology Reviews 12: 126–146.
Turgeon, B.  and Yoder, O.  2000. Proposed nomenclature for mating type genes of filamentous ascomycetes. Fungal Genetics and Biology 31: 1-5.
Turner, P.C., Moore, S.E., Hall, A.J., Prentice, A.M., and Wild, C.P. 2003. Modification of immune function through exposure to dietary aflatoxin in Gambian children. Environmental Health Perspectives 111: 217–220.
Varga, J. 2003. Mating type gene homologues in Aspergillus fumigatus. Microbiology 149: 816-819.
Wicklow, D.T., McAlpin, C.E., and Platis, C.E. 1998. Characterization of the Aspergillus flavus population within an Illinois corn field. Mycological research 102:263-268.
Zhang, D, Yang, Y, Castelbury, LA, Cerniglia, CE 1996. A method for large scale isolation of high transformation efficiency genomic DNA. FEMS Microbiology Letters 145:261–265