Agrobacterium tumefaciens-mediated transformation of Trichoderma viridescens

Document Type : Original Article

Authors

1 Plant Pathology Section, Department of Plant Protection, Bu-Ali Sina University, Hamedan, Iran

2 Plant Protection Department, Agriculture Faculty, Bu-Ali Sina University, Hamedan, Iran

10.22043/MI.2022.360018.1230

Abstract

 
Fungi have been subjected to genetic 
engineering in various ways. Agrobacterium 
tumefaciens-mediated transformation (AtMT) is an 
important method for the genetic manipulation of 
different fungal species. Here, gene transfer to 
Trichoderma viridescens was performed and 
optimized using A. tumefaciens strain pSDM2315. 
Also, the effect of different temperatures on the growth 
and conidiation rates of the wild-type and transformed 
fungi was investigated. The results indicated that the 
best conditions for maximum transformation in T. 
viridescens were the combination of one day of 
incubation, 28˚C, pH 5.0, and a concentration of 107
conidia mL-1
. The results of gene transfer and stable 
expression of transgenes were confirmed using 
sequential culture in selective media and PCR.
Moreover, the mycelial growth of transformed fungi at 
different temperatures did not show an obvious 
difference from the wild-type, but the mutants 
produced different numbers of conidia. This indicates 
the potential of AtMT for functional mutagenesis and 
physiological studies in T. viridescens. 

Keywords


Abuodeh RO, Orbach MJ, Mandel MA, Das A, Galgiani J. 2000. Genetic transformation of Coccidioides immitis facilitated by Agrobacterium tumefaciens. Journal of Infectious Diseases 181:2106-2110.
Almeida AJ, Carmona JA, Cunha C, Carvalho A, Rappleye CA, Goldman WE, Hooykaas PJ, Ludovico P, Rodrigues F. 2007. Towards a molecular genetic system for the pathogenic fungus Paracoccidioiddes brasiliensis. Fungal Genetics and Biology 44:1387-1398.
Bundock P, Den Dulk Ras A, Beijersbergen A, Hooykaas PJ. 1995. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. The EMBO Journal 14:3206-3214.
Chen X, Romain CP, Tan Q, Schlagnhaufer B, Royse DJ, Huff  DR .1998. PCR-Based genotyping of epidemic and pre-epidemic Trichoderma isolates associated with green mold of Agaricus bisporus. Applied and Environmental Microbiology 65:2674-2678.
Christian PK, Gary EH. 2002. Trichoderma and Gliocladium. Published in the Taylor and Francis Library 3-25.
Combier JP, Melayah D, Raffier C, Gay G, Marmeisse R. 2003. Agrobacterium tumefaciens- mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum. FEMS Microbiology Letters 220:141-148.
Covertet SF, Kapoor P, Lee M, Briley A, Nairn CJ. 2001. Agrobacterium- mediated transformation of Fusarium circinatum. Mycology Research 105:259-264.
De Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG.1998. Agrobacterium tumefaciens- mediated transformation of filamentous fungi. Nature Biotechnology 16:839-842.
Flowers JL, Vaillancourt LJ. 2005. Parameters affecting the efficiency of Agrobacterium tumefaciens- mediated transformation of Colletotrichum graminicola. Current Genetics 48:380-388.
Gardiner DM, Howlett BJ. 2004. Negative selection using thymidine kinase increases the efficiency of recovery of transformants with targeted genes in the filamentous fungus Leptosphaeria maculans. Current Genetics 45:249-255.
Hooykaas PJ, Dulk Ras A, Bundock P, Soltani J, van Attikum H, van Heusden GPH. 2006. Agrobacterium-mediated transformation of the yeast. In: K Wang, ed, Agrobacterium protocols. Humana Press 465-473.
Hooykaas PJJ, van Heusden GPH, Niu X, Roushan MR, Soltani J, Zhang X,   van der Zaal BJ. 2018. Agrobacterium-Mediated Transformation of Yeast and Fungi. In: “Agrobacterium Biology: from Basic Science to Biotechnology”. pp. 349-374. Edited by Gelvin SB. Springer, Germany.
Idnurm A, Reedy JL, Nussbaum JC, Heitman J. 2004. Cryptococcus neoformans virulence gene discovery through insertional mutagenesis. Eukaryotic Cell 3:420-429.
Leclerque A, Wan H, Abschutz A, Chen S, Mitina GV, Zimmermann G, Schairer HU. 2004. Agrobacterium-mediated insertional mutagenesis (AIM) of the entomopathogenic fungus Beauveria bassiana. Current Genetics 45:111-119.
Malonek S, Meinhardt F. 2001. Agrobacterium tumefaciens- mediated genetic transformation of the phytopathogenic ascomycete Calonectria morganii. Current Genetics 40:152-155.
 
 
 
Mantyla AL, Rossi KH, Vanhanen SA, Penttila ME, Suominen PL, Nevalainen KM. 1992. Electrophoretic karyotyping of wild-type and mutant Trichoderma longibrachiatum (reesei) strains. Current Genetics 21:471-477.
Meyer V, Mueller D, Strowig T, Stahl U. 2003. Comparison of different transformation methods for Aspergillus giganteus. Current Genetics 43:371-377.
Michielse CB, Hooykaas PJ, Hondel CA. 2004. Role of bacterial virulence proteins in Agrobacterium- mediated transformation of Aspergillus awamori. Fungal Genetics and Biology 41:571-578.
Michielse CB, Arentshorst M, Ram AF, van den Hondel CA. 2005a. Agrobacterium- mediated transformation leads to improved gene replacement efficiency in Aspergillus awamori. Fungal Genetics and Biology 42:9-19.
Michielse CB, Hooykaas PJ, Van den Hondel CA, Ram AF. 2005b. Agrobacterium- mediated transformation as a tool for functional genomics in fungi. Current Genetics 48:1-17.
Mullins ED, Chen X, Romaine P, Raina R, Geiser DM, Kang S. 2001. Agrobacterium- mediated transformation of Fusarium oxysporum an efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91:173-180.
Nazmi Rodsari F. 2007. Identification of Trichoderma species in southern coasts of Caspian Sea. Dissertation, Bu-Ali Sina University.
Qian Y, Li ming Y, Pi Gang L, Sen L, Jinzhu S. 2007. Agrobacterium tumefaciens-mediated transformation of Trichoderma harzianum. KMITL Science and Technology Journal 7: 185-191.
Sharma KK, Ramesh C Kuhad RC. 2010. Genetic transformation of lignin degrading fungi facilitated by Agrobacterium tumefaciens. BMC Biotechnology 10:67.
Soltani J, Van den Heusden GPH, Hooykaas PJJ. 2008. Agrobacterium-mediated transformation of non-plant organisms. In Agrobacterium from Biology to Biotechnology Springer Press United States 649-675.
Soltani J. 2009. Host genes involved in Agrobacterium-mediated transformation. Dissertation, University of Leiden.
Soltani J, Van den Heusden GPH, Hooykaas PJJ. 2009. Deletion of host histone acetyltransferases and deacetylases strongly affects Agrobacterium-mediated transformation of Saccharomyces cerevisiae. FEMS Microbiology Letters, 298: 228-233.
Sun W, Liu L, Hu Xi, Tang J, Liu P, Chen J, Chen Y. 2009. Generation and identification of DNA sequence flanking T-DNA integration site of Trichoderma atroviride mutants with high dichlorvos-degrading capacity. Bioresource Technology DOI: 10.1016/j.biortech.2009.06.031.
Yang L, Yang Q, Sun K, Tian Y, Li H. 2011. Agrobacterium tumefaciens mediated transformation of ChiV gene to Trichoderma harzianum. Applied Biochemistry and Biotechnology 163: 937-45.
Yousefi-Pour HM, Soltani J, Nazeri S. 2013. A survey on optimization of Agrobacterium-mediated genetic transformation of the fungus Colletotrichum gloeosporioides. Journal of Cell and Molecular Research, 5: 35-41.
Zafari D. 2004. A taxonomic study of the genus Trichoderma in Iran. Dissertation, University of Modares.
Zeilinger S. 2004. Gene disruption in Trichoderma atroviride via Agrobacterium-mediated transformation. Current Genetics 4545:54–60.
Zhang YH, Himmel MH, Mielenz JR. 2006. Outlook for cellulase improvement screening and selection strategies. Biotechnology Advances 24:452-481.
Zhong YH, Wang XL, Wang TH, Jiang Q. 2007. Agrobacterium-mediated transformation (ATMT) of Trichoderma reesei as an efficient tool for random insertional mutagenesis. Applied Genetics and Molecular Biotechnology 73:1348-1354.
Zwiers LH, De Waard MA. 2001. Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola. Current Genetics 39:388-393.