
Mycologia Iranica 11(1): 1–17, 2024                                              DOI: 10.22043/MI.2024.364726.1273 

 
 

 
Submitted 16 Jan 2024, accepted for publication 7 June 2024 
 Corresponding Author: E-mail: jamali454@yahoo.com  
 © 2024, Published by the Iranian Mycological Society 
http://mij.areeo.ac.ir 
 

   

Review Article  

as an emerging plant   .Wollenw Fusarium redolens ofA review 
 pathogen in Iran 

 
S. Jamali 

Department of Plant Protection, College of 
Agriculture, Razi University, Kermanshah, Iran 

 
Abstract: This study presents scientific research on 
Fusarium redolens Wollenw. A systematic search of 
the Scopus database from 1956 to 2023 yielded 201 
indexed documents. F. redolens is an emerging 
pathogen with a significant impact on pulse crops. 
Population growth, especially in developing 
countries, creates a primary problem: food 
availability, especially protein sources. Chickpeas are 
an important crop in western Iran, especially in 
Kermanshah province. Until 2019, most studies 
attributed chickpea yellowing and root rot to 
Fusarium oxysporum and Fusarium solani, 
respectively. To manage this crop, previous 
recommendations included planting cereals such as 
barley and wheat due to the presence of F. oxysporum 
formae speciales in the soil. However, F. redolens has 
now been identified as the major cause of chickpea 
yellowing and root rot, especially in the western 
provinces. This Fusarium species have been isolated 
from 54 species of 50 genera and 29 plant families, 
with the highest frequency observed in Fabaceae, 
Poaceae and Asteraceae hosts. Given its 
pathogenicity to wheat and barley and the unknown 
presence of formae speciales, rotation with these 
cereals is no longer considered an appropriate 
management solution.  Further research is needed to 
develop effective management strategies for the 
future. 
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INTRODUCTION 
 

As a common pathogen, saprobe, and endophyte, 
Fusarium is one of the most ecologically important 
genera of soil-dwelling fungi (Summerell et al. 2011). 
The fungus has been isolated from a wide range of 
soil types throughout the world. This genus is a 
member of the class Sordariomycetes, order 

Hypocreales, division Ascomycota, subdivision 
Pezizomycotina, and family Nectriaceae (Kirk et al. 
2008). Fusarium species exhibit niche differentiation 
within the complex microbial tapestry of the soil 
environment. In particular, some species are very 
efficient at breaking down organic matter in the soil. 
This decomposition process, known as 
mineralization, releases essential nutrients for plants 
and other soil organisms. This contributes 
significantly to the vital nutrient cycle within the soil 
ecosystem (Stoner 1981, Paul & Clark 1989, Ruiter et 
al. 1994). This is due to their capacity for saprobic 
digestion. Many Fusarium species are important plant 
pathogens that can cause a range of plant diseases, 
including foliar diseases, dieback, canker, vascular 
wilt, seed and fruit decay, onion rot, stem rot, and 
root rot (Dean et al. 2012, Chehri et al. 2017, Trabelsi 
et al. 2017, Sharma & Marques 2018). Several studies 
have demonstrated the endophytic colonization of the 
root cortex (endorhiza) by non-pathogenic species 
within the Fusarium genus (Dababat & Sikora 2007). 
The management of soil-borne plant diseases has 
proven to be a useful application of these non-
pathogenic Fusarium (Steinberg et al. 2007, Zhang et 
al. 2015, Šišić et al.  2017, Shadmani et al. 2018).  

Fusarium redolens Wollenw. has recently been 
reported as an emerging pathogen threatening 
chickpea production in Iran. Due to the economic 
importance of chickpea and its vast area of cultivation 
in Iran, especially in the western provinces, this crop 
has become the major host for F. redolens in the 
country. This fungus causes significant quantitative 
economic losses to chickpea production. The area 
under chickpea cultivation in Iran is about 439,872 
hectares, 95% of which is rain-fed. Iran is the ninth 
largest producer of chickpeas in the world after India, 
Australia, Ethiopia, Turkey, Myanmar, the Russian 
Federation, Pakistan, and Mexico (FAOSTAT 2021). 
Iran produces about 168,000 tons of chickpeas per 
year, accounting for 2% of global production. More 
than 80% of chickpea production in Iran comes from 
the provinces of Kermanshah, Lorestan, Kurdistan, 
East Azerbaijan, and West Azerbaijan (Western 
Provinces). Worldwide, the average grain yield of 
chickpeas is 850 kg⋅ha-1, and in Asia, it is 919.7 
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kg⋅ha-1 (FAOSTAT 2021). Chickpea yield in Iran is 
much lower than the world average. The world 
average yield of chickpea is about 1800 kg⋅ha-1. In 
Iran, however, the average yield is only 400 kg⋅ha-1. 
Kermanshah province is the leading chickpea 
producer in Iran, accounting for nearly 28% of the 
total area (141,520 ha). The Bivanij cultivar 
dominates the region (except in cold and high-altitude 
areas) due to its faster maturity, higher biomass, and 
grain yield compared to other cultivars (Azad, 
Hashem, ILC482). However, pathogens and poor 
management practices significantly affect production. 
Studies show that F. oxysporum and related fungi 
(FOSC) are a major threat in western Iran, where 
rainfall exceeds 400 mm (Younesi et al., 2020). 
Therefore, accurate identification of Fusarium species 
is essential for the development of effective control 
measures. 

 
Chickpea Fusarium disease history: World 
 

Fusarium species are among the most devastating 
pathogens of chickpeas globally. The first 
documented instance of chickpea wilt occurred in 
India, reported by Butler in 1918. The disease was 
also reported in Myanmar in 1923, but the exact cause 
of the disease was unknown until Padwick's 
successful identification of the causative agent in 
1940 (Erwin 1958). In a study conducted by Prasad 
and Padwick in 1939, a total of 300 Fusarium isolates 
were collected from chickpeas. These isolates were 
divided into three different groups. The first group 
included non-pathogenic isolates, while the second 
group was found to be responsible for wilt disease. 
The third group was found to cause seed rot. The 
Fusarium isolates in the second group were named F. 
orthoceras var. ciceri. Erwin isolated some strains of 
Fusarium from wilted chickpeas in California and 
named them F. lateritium (Erwin 1958). He divided 
them into two groups: F. lateritium f. sp. crotalariae 
(syn: F. udum var. crotalariae), which causes wilt of 
sunn hemp  (Crotalaria juncea), and F. lateritium f. sp. 
cajani (syn: F. udum var. cajani), which causes wilt 
of lentil (Cajanus cajan). 

In an experiment, Fusarium strains isolated from 
chickpea in India were compared to those isolated 
from chickpea in California (Erwin 1958). Both 
strains were morphologically and pathogenically 
similar and were therefore introduced under the name 
F. lateritium f. sp. ciceri. Echandi (1970) separated 
Fusarium isolates from chickpea in Peru and reported 
them as F. oxysporum. It was shown that the isolated 
Fusarium strains causing wilt symptoms in chickpeas 
were all F. oxysporum and F. lateritium was not 
isolated (Echandi 1970). F. oxysporum f. sp. ciceris 
(Padwick) Matuo (Foc) and K. Sato, exhibits two 
main pathotypes: a yellowing type causing 
progressive leaf yellowing and vascular discoloration, 
and a wilting type inducing severe chlorosis, wilting, 
and vascular discoloration (Trapero-Casas & 
Jiménez-Díaz 1985). Additionally, eight pathogenic 

races (0, 1A, 1B/C, 2, 3, 4, 5, and 6) have been 
identified within this forma specialis (Haware & 
Nene 1982, del Mar Jiménez-Gasco et al. 2001). 
Within F. oxysporum f. sp. ciceris, races 0 and 1B/C 
are associated with a yellowing symptom, and the 
remaining races are associated with a wilting 
symptom (del Mar Jiménez-Gasco et al. 2001, 2003). 
Yield losses in chickpea due to the presence of this 
pathogen have been reported to be up to 15% and in 
some cases up to 70% (Halila & Strange 1996, 
Honnareddy & Dubey 2006). 

At present, based on morphological 
characteristics, F. oxysporum f. sp. ciceri has been 
reported as the major causal agent of chickpea 
diseases in many parts of the world, including 
Australia, Canada, Egypt, Ethiopia, India, Pakistan, 
Peru, Turkey, Spain, Syria, Tunisia, the United States 
and other countries (Chattopadhyay & Sen Gupta 
1967, Echandi 1970, Westerlund et al. 1974, Trapero-
Casas & Jimnez-Diaz 1985, Bhatti & Kraft 1992, 
Haware et al. 1996, Nene et al. 1996, Demirei et al. 
1998, Esmaeili Taheri et al. 2011). The 
morphological similarity between Fusarium spp., 
particularly F. oxysporum and F. redolens, can lead to 
misidentification based solely on these characteristics. 
This overlap raises the possibility that previous 
identifications of F. oxysporum may have included F. 
redolens (Jiménez-Fernández et al. 2011, Saeedi & 
Jamali 2021). An isolate of F. redolens previously 
thought to be F. oxysporum f. sp. asparagi was now 
shown to be F. redolens (Blok & Bollen 1997). 
Molecular techniques have revealed F. redolens as 
the causative agent of chickpea root rot in several 
countries, including Canada, Lebanon, Morocco, 
Pakistan, Spain, the Netherlands, and Tunisia 
(Baayen et al. 2000, Esmaeili Taheri et al. 2011, 
Leisso et al. 2011, Bouhadida et al. 2017, Rafique et 
al. 2020). A study by Jiménez-Fernández et al. (2011) 
showed that infection of chickpea with F. redolens 
induced a disease syndrome similar to that caused by 
the yellowing pathotype of F. oxysporum f. sp. 
ciceris. To date, at least nine Fusarium species have 
been reported to infect chickpeas around the world. 
These include F. culmorum, F. equiseti, F. 
graminearum, F. hostae, F. oxysporum f. sp. ciceris, 
F. proliferatum, F. redolens, F. sporotrichioides and 
F. verticillioides (Esmaeili Taheri et al. 2011, 
Jendoubi et al. 2017, Saeedi & Jamali 2021, Younesi 
et al. 2021, Geraminasab et al. 2023). 

 
Chickpea Fusarium disease history: Iran 
 

Fusarium wilt reduces both seed yield and seed 
weight in chickpea production in Iran. Chickpea yield 
losses of up to 15% annually and up to 70% in severe 
outbreak years have been reported. Chickpea wilting 
and yellowing diseases were first reported in Iran by 
Manuchehri and Mesri from Khoy, Shapur, Ahar, 
Miandoab, Karaj, Gonbad, Shiraz, Isfahan, and 
Kashan (Manuchehri & Mesri 1966). At that time, the 
pathogen F. lateritium f. sp. ciceris was diagnosed by 
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sending samples of the fungus isolated from infected 
chickpeas to California. F. oxysporum f. sp. ciceri 
was introduced by Banihashemi (1986) as the causal 
agent of chickpea wilt in Shiraz. In 1993, isolates 
obtained from the root and crown of wilted chickpea 
plants in rainfed fields in Lorestan province were 
identified as F. oxysporum (Nazari & Ershad 1993). 
In Fars province, the causal agent of chickpea root 
rot, F. solani f. sp. pisi, and the causal agent of 
chickpea yellowing and wilting, F. oxysporum f. sp. 
ciceri, were identified (Mohammadi & Banihashemi 
2005). Graminasab et al. (2014) identified four 
species, including F. oxysporum, F. solani (Mart) 
sacc, F. proliferatum (Matsus) Nirenberg, and F. 
equiseti (corda) sacc, as the major causes of wilting 
and yellowing in chickpea. Since then, several reports 
have been published on the genetic variability of the 
pathogen. In Kermanshah province, Nourollahi et al. 
(2017) found nine fingerprint groups among 45 F. 
oxysporum f. sp. ciceris isolates from commercial 
chickpea fields using five microsatellite primers. 
Azimi et al. (2017) employed 12 inter simple 
sequence repeat (ISSR) primers to analyze the genetic 
diversity of F. oxysporum f. sp. ciceris isolates from 
chickpea in Ilam province, Iran. Their study identified 
24 distinct fingerprint groups among 47 isolates. This 
contrasts with previous research in western Iran, 
which suggested only five pathogenic groups were 
present (Younessi 2004). Races 1, 2, and 4 were 
identified based on disease symptoms in chickpeas, as 
documented by Haware and Nene (1982). Earlier 
identifications relied primarily on morphological 
features of the pathogen. Fusarium oxysporum f. sp. 
ciceris is widely accepted as the main cause of 
Fusarium wilt in chickpeas. Until 2009, there were no 
reports on the pathogenicity of F. redolens on crops 
in Iran. Based on morphological and species-specific 
primers, Ghanbarzadeh et al. (2014) identified F. 
redolens as a pathogen of red onion, causing basal 
and bulb rot. Chehri (2016) showed that F. redolens 
is associated with tomatoes in Iran based on 
morphological and molecular phylogenetic analyses, 
and his research confirmed the prevalence of F. 
redolens in Iran. Chehri (2018) also showed that F. 
redolens is one of the most common fungi isolated 
from agricultural soils in Kermanshah province, Iran. 

Fusarium redolens has been reported as 
pathogenic on a wide range of hosts in Iran, including 
Cicer arietinum, Malus domestica, Mentha piperita, 
Salsola incanescens, Triticum aestivum and Zea mays 
as pathogenic (Habibi et al. 2018, Jahedi et al. 2019, 
Fallahi et al. 2019, Razghandi et al. 2020, Younesi et 
al. 2021, Esmaili & Sharifnabi 2023). Interestingly, it 
has also been found as an endophyte in Achillea 
millefolium, A. filipendulina and Hordeum vulgare 
(Shadmani et al. 2021, Hatamzadeh et al. 2023). 
Studies suggest F. redolens may significantly 
contribute to chickpea black root rot in Iran. Younessi 
et al. (2021) found it caused high disease rates in 
certain chickpea varieties. Additionally, Saeedi and 
Jamali (2021) reported its frequent presence in 

uncultivated soil and its identification from 
symptomatic chickpea roots. Their findings warrant 
further investigation into F. redolens' role and biology 
in Iran's chickpea crops. 

 
Fusarium redolens 
 
History of research on Fusarium redolens between 
1956 and 2024 

In the period from 1956 to 2024, 201 and 99 
published documents were identified fulfilling the 
search criteria in Scopus and Web of Science, 
respectively. Figure 1 shows the evolution of the 
number of publications per year. Between 1956 and 
2010 (54 years), 65 documents were published and 
the number of publications per year was less than 
five. Most of these articles have been concerned with 
isolation and pathogenicity F. redolens on plants such 
as carnation (Gerlach & Pag 1961, Baayen et al. 
1997), peas and beans (Hepple 1960, Clarkson 1978), 
asparagus (Gordon-Lennox & Gindrat 1987), oil palm 
(Ho et al. 1985), maize (O'Donnell et al. 1999), rose 
(Ypema et al.  1987) and white pine (Ocamb & 
Juzwik 1995). An increase in the number of 
publications was observed from 2010 onward (Figure 
1), and a sharp rise in indexed documents was 
observed in 2021 (n=22). Fifty-six percent of the 
articles were published between 2016 and 2024. The 
first article titled "Pathogenicity of the fungus 
Fusarium redolens Wr.; clinico-experimental 
research" (Kozin 1956) was published in Vestnik 
venerologii i dermatologii Journal (30:28-31). The 
paper is written in Russian and focuses on the 
pathogenicity of the fungus Fusarium redolens Wr., 
through clinico-experimental research. 

Figure 2 shows the areas of knowledge related to 
the studies of F. redolens published between 1956 
and 2023. In this regard, (i) Agriculture and 
Biological Sciences (146 documents), (ii) 
Biochemistry, Genetics, and Molecular Biology (47 
documents), and (iii) Immunology and Microbiology 
(29 documents), contributed with 47.7%, 15.5%, and 
9.5% of the indexed documents, respectively. 
Agriculture and Biological Sciences was ranked first 
on this list because most of the publications consisted 
of the isolation, identification, and characterization of 
F. redolens populations associated with different 
plant species in various countries. The largest number 
of articles was published in Plant Disease (n=22), 
followed by Journal of Phytopathology (n=9). The 
leading countries in studies related to F. redolens 
were China, the United States, the Netherlands, and 
Iran, which contributed 34, 25, 18, and 15 documents, 
respectively (Fig. 3). 

Figures 4 and 5 show the research-topic map of F. 
redolens studies between 1956 and 2024. The 
network visualization contains 95 items grouped in 
four clusters (Fig. 4). In this regard, the biggest node, 
which corresponds to the keyword with the highest 
occurrences, was F. redolens (Fig. 4). Many isolates 
of this fungus from plants were initially misidentified 
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as F. oxysporum. Both are within the same cluster 
(the red one) (Saeedi and Jamali 2021). Here, it is 
clear the special interest in the pathogenicity of F. 
redolens in plants. This species has been reported as a 
pathogenic agent in more than 50 host plants.  

Figure 5 shows how the research topics moved 
from species specificity/asparagus/asparagus 
officinalis/biosynthesis/metabolism/beauvericin/F. 
oxysporum (2010 to 2012), passing by 
classification/biodiversity/microbiology/F. edolens/F. 
hostae (beginning of 2012), molecular analysis/ 
rDNA/ fungal DNA/ morphology/ phylogenetics 
/internal transcribed spacer/ morphology (beginning 
of 2012) to wheat/ controlled study/ root 
rot/pathogenicity/wilt/symptom/endophytes (end of 
2018). Further studies should be focused on the effect 
of environmental parameters on the severity of F. 
redolens disease and control measures for future 
outbreaks of F. redolens (Saeedi and Jamali 2021).  

 
Taxonomy of Fusarium redolens 
 

The exact taxonomic placement of F. redolens is a 
subject of ongoing debate. Wollenweber (1913) first 
described F. redolens and maintained this 
nomenclature in subsequent publications 
(Wollenweber 1916-1935, 1931, Wollenweber & 
Reinking 1935). Traditionally, size differences in 
macroconidia were the primary way to distinguish F. 
oxysporum from F. redolens (Gordon, 1952). 
However, their similar morphology led to earlier 
classifications grouping them as the same species 
(Snyder & Hansen, 1940; Nelson et al., 1983), a 
variety of F. oxysporum (Gordon, 1952; Booth, 
1975), or even F. solani (Bilaĭ, 1955). The use of 
molecular methods is necessary to correctly identify 
and separate Fusarium species. Almost all molecular 
studies for Fusarium identification have been based 
on comparison of rDNA internal transcribed spacers. 
Previous studies have shown that sequence data from 
the ITS rDNA region is not sufficient to distinguish 
the Fusarium taxa studied (Zhao et al. 2011, Raja et 
al. 2011, Šišić et al. 2018, Alhawatema et al. 2019). 
Baayen et al. (2000) have successfully used 
restriction fragment length polymorphism (RFLP) 
patterns of rRNA internal transcribed spacer (ITS) 
regions to diagnose F. oxysporum and F. redolens. 
Fusarium oxysporum is polymorphic for AluI and 
Hinfl and has produced three RFLP fragments. 
Fusarium redolens cannot be distinguished from its 
close relative F. hostae by this technique (Baayen et 
al. 2001). Many researchers have reported that the 
tef1-α gene has a higher resolution than ITS and can 
provide a sufficient phylogenetic signal to distinguish 
between different Fusarium species. The transfer 
elongation factor gene contains both conserved and 
variable regions that allow inter- and intraspecific 
comparisons and is reliable for studying the 
phylogenetic relationships of Fusarium spp. 
(Kristensen et al. 2005). Modern DNA analysis 
reveals F. redolens as a separate species from F. 

oxysporum (O'Donnell et al., 1998; Baayen et al., 
2000, 2001; Bogale et al., 2007). These studies even 
suggest they aren't closely related. Notably, Baayen et 
al. (2001) found the F. nisikadoi-F. miscanthi group 
to be closer to F. oxysporum than F. redolens and its 
relatives. Other research suggests F. hostae is closely 
related to F. redolens, with strong statistical support 
(Saeedi & Jamali 2021). Bogale et al. (2007) designed 
a specific primer set (Redolens-F: 5-ATC GAT 
TTTCCC TTC GAC TC-3; Redolens-R: 5-CAA TGA 
TGA TTGTGA TGA GAC-3) to identify F. redolens 
isolates. This method effectively differentiates F. 
redolens from other Fusarium species, enabling rapid 
and straightforward diagnosis. Compared to previous 
methods involving restriction fragment length 
polymorphism (RFLP) analysis, these primers allow a 
simpler distinction between F. redolens and F. 
oxysporum. 

Inaccurate identification of Fusarium species has 
the potential to cause significant issues, including 
inappropriate management practices and the 
implementation of ineffective control strategies. 
Currently, the most reliable method for Fusarium 
identification is DNA sequencing. The gold standard 
for this involves targeting the translation elongation 
factor 1-alpha (TEF1) gene region. A publicly 
available database called FUSARIUM-ID exists for 
comparing TEF1 sequences against known Fusarium 
species (Geiser et al. 2004). In some cases, TEF1 
alone might not be sufficient for differentiating 
closely related species. Multi-locus sequence typing 
(MLST) involves sequencing multiple gene regions, 
such as TEF1 and RNA polymerase II second largest 
subunit (rpb2) for a more robust identification. 

 
Pathogenic Fusarium redolens isolates 
 

Fusarium redolens has been reported as a 
pathogenic agent in more than 50 host plants 
including; soybean (Glycine max), Chinese skullcap 
(Scutellaria baicalensis), Tobacco (Nicotiana 
tabacum), alfalfa (Medicago sativa), asparagus 
(Asparagus officinalis), Rye (Secale cereale), wheat 
(Triticum aestivum), potato (Solanum tuberosum), 
faba bean (Vicia faba), parsley (Petroselinum 
crispum), gastrodia (Gastrodia elata), lentil (Lens 
culinaris), American Ginseng (Panax quinquefolius), 
Duohua huangjing (Polygonatum cyrtonema), black 
cumin (Nigella sativa), Carnation (Dianthus 
caryophyllus), jojoba (Simmondsia chinensis), Barley 
(Hordeum vulgare), red clover (Trifolium pratense), 
cotton (Gossypium hirsutum), Lilium candidum, flax 
(Linum usitatissimum), lanzhou lily (Lilium davidii 
var. unicolor), Salsola (Salsola sp.), rice (Oryza 
sativa), spinach (Spinacia oleracea), onion 
(Allium cepa), rocket (Diplotaxis tenuifolia), maize 
(Zea mays), sugar beet (Beta vulgaris), white lupin 
(Lupinus albus), tomato (Solanum lycopersicum), 
sunflower (Helianthus annuus), roses (Rosa spp.), 
ragwort (Jacobaea vulgaris), pea (Pisum sativum), 
oat (Avena sativa), Atractylodes chinensis and date 
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palm (Phoenix dactylifera) (Larsson & Olofsson 
1994, Baayen et al. 2000, Riccioni et al. 2008, 
Jiménez-Fernández et al. 2011, Esmaeili Taheri et al. 
2011, Al-Sadi et al. 2012, Shikur Gebremariam et al. 
2015, Jing et al. 2016, Pearson et al. 2016, Bouhadida 
et al. 2017, Esmaeili Taheri et al. 2017, Chehri 2018, 
Taylor et al. 2019, Fallahi et al. 2019, Rafique et al. 
2020, Le et al. 2020, Maymon et al. 2021, Qostal et 
al. 2021, Šišić et al. 2022, Abi Saad et al. 2022, 
Gibert et al. 2022, Li et al. 2022, Litovka et al. 2023, 
Olszak-Przybyś et al. 2023, Jiang et al. 2023, 
Armstrong-Cho et al. 2023, Gai et al. 2023, Wang et 
al. 2023, Jia et al. 2023, Xie et al. 2023). Several 
types of forest plants that have reportedly been 
attacked by F. redolens are Aleppo pine (Pinus 
halepensis), conifers (Pinus, Cupressus, Picea), and 
koa (Acacia koa) (Lazreg et al. 2014, Dobbs et al. 
2023). Disease symptoms caused by F. redolens 
include root rot (Olszak-Przybyś et al. 2023, 
Armstrong-Cho et al.  2023), root and crown rot 
(Baayen et al. 2000), crown rot (Shikur Gebremariam 
et al. 2015), wilt (Jia et al. 2023), vascular wilt 
(Rafique et al. 2020), collar rot (Le et al. 2020), bulb 
rot (Cao et al. 2020), seedling blight (Wang et al. 
2019), basal rot (Haapalainen et al. 2016), wilting and 
yellowing (Taylor et al. 2019), ear rot and kernel 
contamination (Fallahi et al. 2019), damping off 
(Lazreg et al. 2014), root, crown, and foot rot 
(Esmaeili Taheri et al. 2017), spear rot (Baayen et al. 
2000), and black rot (Ypema et al. 1987).  

 
Non-pathogenic Fusarium redolens isolates  
 

Non-pathogenic F. redolens isolates have been 
shown to grow endophytically in the endorhiza of 
many plants including; rice (Oryza sativa), olive 
(Olea europaea), Russian wormwood (Artemisia 
Sacrorum), Salsola (Salsola sp.), maigoya (Coleus 
forskohlii), barley (Hordeum vulgare L.), oriental 
paperbush (Edgeworthia chrysantha), lemon 
bergamot (Monarda citriodora), Himalayan yew 
(Taxus wallichiana), esparto or needle grass 
(Macrochloa tenacissima), cocoa (Theobroma 
cacao), Chinese foxglove (Rehmannia glutinosa), 
Stipa grandis, Fritillaria unibracteata var. wabuensis, 
and Dioscorea zingiberensis (Su et al. 2010, Xu et al. 
2010, Garyali et al. 2013, Pan et al. 2015, Katoch & 
Pull 2017, Shadmani et al. 2018, Mastan et al. 2019, 
Razghandi et al. 2020, Gargouri et al. 2020, Ambele 
et al. 2020, Hong-juan et al. 2021, Nazir et al. 2022, 
Roy et al. 2023).  

Extracted beauvericin from non-pathogenic F. 
redolens isolates of Dioscorea zingiberensis has been 
used effectively as an antibacterial against several 
bacteria. These include Agrobacterium tumefaciens, 
Bacillus subtilis, Escherichia coli, Pseudomonas 
lachrymans, Staphylococcus haemolyticus and 
Xanthomonas vesicatoria (Xu et al. 2010). Recently, 
ethyl acetate was isolated from F. redolens, 
increasing the interest in strains of this species, since 
ethyl acetate  showed significant cytotoxic potential 

against HepG2 cells (Nazir et al. 2022). Metabolites 
such as 3,4-dihydrocoumarin, 5'-
deoxyribonucleoside, harmala alkaloid, benzofuran, 
and benzothiazole have also been obtained from F. 
redolens, which have inhibitory effects on wheat scab 
(Fusarium graminearum) (Hong-Juan et al. 2021). 
Mastan et al. (2021) used a consortium of 
Trichoderma viride and F. redolens and observed 
significant enhancement in plant growth, root 
biomass, and forskolin content of the medicinal plant 
Coleus forskohlii. The peimisine produced by F. 
redolens relieves sputum and cough, has anti-tumour 
activity and is a potent inhibitor of the angiotensin-
converting enzyme (Feng et al. 2015). Taxol is a 
diterpenoid derived from F. redolens with an anti-
tumor activity that inhibits microtubulin 
depolymerization, thereby affecting spindle formation 
and preventing the mitosis of tumor cells (Garyali et 
al. 2014). In the study by Roy et al. (2023), the 
antagonistic activity of F. redolens against the rice 
pathogen Magnaporthe grisea was observed. 
Inoculation of rice plants with F. redolens also 
increased the production of enzymes such as 
peroxidase, polyphenol oxidase, chitinase, and 
superoxide dismutase. Katoch and Pull (2017) have 
shown the antagonistic activity of F. redolens against 
Sclerotinia sp. and Colletotrichum capsici. They 
mentioned that the endophyte F. redolens could be 
used effectively to control a wide range of 
phytopathogens. 

 
Management and formae speciales 
 

To control this disease, various crop management 
techniques have been suggested, such as crop 
rotation, sanitation, the use of bacterial or fungal 
antagonists, and the use of resistant chickpea 
cultivars. One of the primary methods used in Iran to 
control Fusarium in chickpeas is the rotational 
planting of wheat and barley. To reduce the Fusarium 
inoculum in the soil, this is advised. The majority of 
research in Iran is based on morphological 
characteristics, and in the majority of the country, F. 
oxysporum has been identified as the most pathogenic 
agent of chickpeas, causing yellowing and black root 
rot symptoms (Afshari-Azad 1998, Mohammadi & 
Banihashemi 2005, 2006, Zamani et al. 2001, 2004, 
Hasanzade et al. 2008, Haji-Allahverdipoor et al. 
2011, Zokaee et al. 2012, Nourollahi et al. 2017). 
This could be the reason this species hasn't been 
identified as one of the fungi associated with root 
disease in Iranian cereal and chickpeas crops in the 
past. The increase in chickpea cultivation within 
wheat rotations might be linked to a higher 
prevalence of F. redolens in these fields. Notably, 
three formae speciales of F. redolens have been 
formally described: F. redolens Wollenw. f. sp. 
asparagi Baayen, F. redolens f. sp. spinaciae (Sherb.) 
Subramanian, and F. redolens f. sp. dianthi (Gerlach 
& Pag 1961, Baayen et al. 1997, 1999).  
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The concept of forma specialis may limit our 
understanding of F. redolens isolates. Researchers 
need to consider both aggressiveness and host range 
variation among individual isolates. A study by 
Esmaeili Taheri et al. (2011) found F. redolens strains 
isolated from durum wheat caused severe disease in 
peas, indicating a broader host range for this fungus. 
Chittem et al. (2015) showed that cereal Fusarium 
pathogens, including F. culmorum, F. graminearum, 
and F. avenaceum, are capable of causing disease on 
pulse crops and dry peas. Moparthi et al. (2021) 
showed that F. redolens from dry pea, chickpea, and 
pea seeds were aggressive on pulses, wheat, and 
barley. Kraft and Pfleger (2001) identified F. solani f. 
sp. pisi as the main cause of pea root rot in 
Washington fields. This fungus exhibits a broad host 
range, infecting not only chickpeas but also other 
non-legumes such as ginseng and mulberry. One 
isolate of F. redolens, previously believed to be part 
of F. oxysporum f. sp. asparagi, has been reclassified 
as F. redolens (Blok & Bollen 1997). This isolate was 
found to be pathogenic on pea and lupin, indicating 
that it is not host-specific. Borrell et al. (2016) 
showed that F. redolens poses a risk to wheat 
production, which is greater when rotated with pulse 
crops. In Iran, particularly in the western provinces, 
millions of hectares of rain-fed chickpeas are grown 
each year in rotation with rain-fed wheat. The 
emergence of F. redolens as a pathogen on Iranian 
crops highlights the need for a deeper understanding 
of its biology and ecological role. This knowledge is 
crucial to assess its economic impact and develop 
effective control strategies, particularly if resistant 
cultivars prove to be the most viable option. Building 
on the points above and considering the evidence of 
cross-pathogenicity, the current forma specialis 
definition may need revision. 

 
Fusarium redolens: Ecology and Environment 
 

The composition of soil fungal communities, 
including Fusarium species, is shaped by climate. 
Different Fusarium species adapt to specific climatic 
and environmental conditions, leading to variations in 
their distribution across regions (Saremi & Burgess 
2000). Despite existing knowledge on the impact of 
environmental factors on Fusarium distribution, the 
specific factors influencing the distribution of F. 
redolens in both agricultural and natural soils remain 
poorly understood. Elucidating the environmental and 
climatic determinants of Fusarium distribution would 
enable predictive modeling of species presence across 
diverse locations. While prior research has 
established strong correlations between Fusarium 
distribution and climatic factors, the broader field of 
modeling Fusarium species distribution using 
advanced software tools remains understudied, 
despite its potential utility. Studies have consistently 
shown that climatic factors play a significant role in 
shaping the distribution patterns of Fusarium species 
(Burgess et al. 1993, Saremi et al. 1997). 

Several Fusarium species exhibit distinct 
geographic distributions. Non-pathogenic species like 
F. oxysporum, F. solani, and F. equiseti appear 
widespread (cosmopolitan), while F. acuminatum and 
F. sambucinum seem restricted to cooler temperate 
regions (Abbas et al. 1987, Backhous & Burgess 
1995, Burgess et al. 1988, Backhous et al. 2001). This 
variation likely reflects the influence of 
environmental factors like temperature, soil properties 
(texture and organic matter), rainfall patterns, and 
local vegetation, as previously documented 
(Summerell et al. 2010). 

Saeedi and Jamali (2021) demonstrated a highly 
significant correlation between species and 
environmental parameters. In their study, all sampled 
soils were predominantly alkaline, with pH levels 
ranging from 7.2 to 9. Jones and Woltz (1981) found 
that soils with a pH value greater than 7 were the 
most suppressive for Fusarium wilt (F. oxysporum). 
Several studies have shown that soil pH can influence 
Fusarium species and disease development. Alkaline 
soils (higher pH) tend to suppress F. oxysporum, a 
fungal pathogen causing wilt (Borrero et al., 2004; 
Fang et al., 2012; Deltour et al., 2017). In contrast, F. 
redolens appears to thrive in soils with neutral to 
slightly alkaline pH, while F. oxysporum and F. 
solani prefer more acidic environments. Saeedi and 
Jamali (2021) demonstrated that F. redolens thrives in 
alkaline conditions. Mycelial growth was highest at a 
pH of 9.72, while significantly lower at pH 5.8. This 
aligns with the naturally alkaline soil found in most 
parts of Iran, including Kermanshah province, where 
soil pH typically ranges from 7.4 to 8.2 (Qadir et al., 
2008; Heidari et al., 2008). These findings suggest 
that F. redolens may be a significant contributor to 
chickpea root rot in this region. It's important to note 
that soil pH also impacts the availability of various 
nutrients crucial for plant health, including copper, 
iron, manganese and zinc (Collins & Buol, 1970). 
Micronutrient acquisition by many organisms relies 
on siderophores, but their effectiveness is heavily 
influenced by environmental pH. This is because pH 
affects both the solubility of metals and the stability 
of the metal-siderophore complexes (chelation). 
Consequently, different species have varying abilities 
to compete for these essential micronutrients 
depending on the surrounding pH (Boukhalfa & 
Crumbliss, 2002; Dhungana & Crumbliss, 2005). 

A recent study identified several key 
environmental factors influencing the distribution of 
Fusarium species in soil (Saeedi and Jamali, 2021). 
These factors, listed in order of decreasing 
importance, included soil texture (specifically the 
ratio of sand, silt, and clay), altitude, calcium 
carbonate content (CaCO3), electrical conductivity 
(EC), organic matter content, and lastly, soil pH. 
Interestingly, the study found that F. redolens thrived 
in soils with a higher clay content compared to F. 
oxysporum and F. solani, which preferred soils with 
very low clay content. Studies have shown that higher 
clay content in soil can be associated with a decrease 
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in Fusarium wilt severity (Deltour et al., 2017). Clay 
can affect pH buffering, nutrient availability, and 
oxygen diffusion, which may contribute to 
suppression (Lavie & Stotzky 1986, Dominguez et al. 
2001). Saeedi and Jamali (2021) revealed that F. 
redolens was most abundant in soils with low levels 
of carbon and organic matter. This aligns with 
observations that loam and sandy loam soils, which 
typically have low clay content, also tend to have 
lower organic matter content (Vujanovic et al., 2006). 
Previous studies have shown a positive link between 
organic matter content in soil and reduced Fusarium 
disease in chrysanthemum, flax, and melon (van Rijn 
et al. 2007, Saadi et al. 2010).  

Soil organic matter plays a crucial role in soil 
health, impacting not only its structure but also 
factors like pH, buffering capacity, and nutrient 
availability (Brady & Weil, 2000; Baum et al., 2015). 
However, the influence of organic matter on 
Fusarium disease can be complex. While Gehlker and 
Scholl (1974) found low pH, high organic matter, and 
clay content to favor the disease in asparagus, Saeedi 
and Jamali (2021) observed the highest abundance of 
Fusarium redolens in uncultivated soils with specific 
electrical conductivity (EC) and calcium carbonate 
(CaCO3) levels. Interestingly, Nam et al. (2018) 
reported no significant effect of increasing EC in 
hydroponic nutrient solutions on lettuce Fusarium 
wilt. Research on the impact of CaCO3 on Fusarium 
survival remains limited. Although CaCO3 is used to 
adjust soil pH and increase calcium (Ca2+) content 
(He et al., 2014), Benson et al. (2009) suggest Ca2+ 
might influence various soil-borne diseases, 
warranting further exploration in the context of 
Fusarium. 

 

Summary and prospects 
 

While the recent identification of Fusarium 
redolens as a chickpea pathogen in Iran represents a 
significant advancement, substantial knowledge gaps 
remain regarding its impact and management. Current 
research highlights its presence; however, a more 
comprehensive understanding of F. redolens and its 
interaction with environmental factors is critical for 
developing effective control strategies. 

In-depth investigations are needed to determine 
how soil properties (texture, pH, electrical 
conductivity (EC), calcium carbonate (CaCO3) 
content), temperature, nutrient availability, and 
organic matter levels influence F. redolens disease 
severity. This knowledge will enable the development 
of region-specific management practices that consider 
prevailing soil conditions.  

Phylogenetic studies suggest F. redolens might be 
responsible for chickpea black root rot in other 
Iranian regions. Further research is necessary to 
confirm this hypothesis. Comparative pathogenicity 
studies with F. oxysporum isolates previously 
identified from these regions should be conducted. 
Additionally, morphological identification methods 
should be complemented with molecular techniques 
for more precise diagnosis.  

A nationwide survey is crucial to map the 
geographical distribution and prevalence of F. 
redolens affecting chickpeas. Furthermore, 
the characterization of F. redolens isolates from 
different regions will provide insights into potential 
strain diversity and virulence variations. This 
information is essential for developing broadly 
effective management strategies. 

 
 

 

 
 

 
Fig. 1. Annual growth of publications in focus area of Fusarium redolens (1956-2023). 
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Fig. 2. Evolution of the number of publications related to Fusarium redolens between 1956 and 2023. 
 
 

 
Fig. 3:  The network map of co-authorship based on affiliation of authors belonging to different countries. 
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Fig. 4. Network visualization of the research-topic map of studies related to Fusarium redolens between 1956 and 
2023. The minimum number of occurrences of a keyword is 5. 
 
 
 
 
 
 
 

 
 
Fig. 5. Overlay visualization of the research-topic map of studies related to Fusarium redolens between 1956 and 
2023. The minimum number of occurrences of a keyword is 5.  
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مروري بر قارچ .Fusarium redolens Wollenw  به عنوان یک عامل بیماري زاي گیاهی 

نوظهور در ایران 

صمد جمالی 

گروه گیاهپزشکی، دانشکده کشاورزي، پردیس کشاورزي و منابع طبیعی، دانشگاه رازي، کرمانشاه، ایران 

چکیده: مـطالـعه حـاضـر مـروري بـر تحقیقات انـجام شـده در مـورد قـارچ Fusarium redolens ارائـه می دهـد. جسـتجوي سیستماتیک 

در پـایگاه داده اسکوپـوس از سـال 1956 تـا 2023، 201 سـند مـرتـبط بـا این قـارچ را شـناسـایی کرد. این قـارچ بـه عـنوان یک عـامـل 

بیماري زاي نـوظـهور، تـأثیر قـابـل تـوجهی بـر حـبوبـات بـه ویژه نـخود دارد. رشـد جـمعیت، بـه ویژه در کشورهـاي در حـال تـوسـعه، یک 

مشکل اصلی ایجاد می کند که آن دسـترسی بـه غـذا، بـه ویژه مـنابـع پـروتئین میبـاشـد. نـخود یکی از مـحصولات مـهم کشاورزي در غـرب 

 F. solani و F. oxysporum ایران مـحسوب می شـود و تـا پیش از سـال 2019، زرد شـدن و پـوسیدگی ریشه آن عـمدتـاً بـه گـونـه هـاي

 F. نسـبت داده می شـد. تـوصیه هـاي قبلی بـراي مـدیریت این مـحصول، کشت غـلات مـانـند جـو و گـندم بـه دلیل وجـود فـرم هـاي ویژه

oxysporum در خـاك بـود. بـا این حـال، مـطالـعات اخیر نـشان می دهـند که F. redolens عـامـل اصلی این بیماري، بـه ویژه در 

اسـتان هـاي غـربی کشور اسـت. این گـونـه از طیف وسیعی از گیاهـان شـامـل 54 گـونـه مـتعلق بـه 50 جـنس و 29 خـانـواده گیاهی 

جـداسـازي و گـزارش شـده اسـت که بیشترین فـراوانی آن در خـانـواده هـاي نـخود، گـندمیان و آفـتابـگردان مـشاهـده شـده اسـت. بـا تـوجـه بـه 

بیماري زایی این قـارچ بـراي گـندم و جـو، تـناوب کشت بـا این غـلات دیگر بـه عـنوان یک راهکار مـناسـب بـراي مـدیریت بیماري در نـظر 

گرفته نمی شود و تحقیقات بیشتري براي توسعه استراتژي هاي موثر مدیریت مورد نیاز است. 

کلمات کلیدي: فرمهاي تخصصی، بیماریزایی، آغازگرهاي اختصاصی گونه، نرمافزار VOSviewer، گندم 
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